A fuzzy difference equation of a rational form
نویسنده
چکیده
منابع مشابه
Asymptotic Behavior of a Second-Order Fuzzy Rational Difference Equation
We study the qualitative behavior of the positive solutions of a second-order rational fuzzy difference equationwith initial conditions being positive fuzzy numbers, and parameters are positive fuzzy numbers. More precisely, we investigate existence of positive solutions, boundedness and persistence, and stability analysis of a second-order fuzzy rational difference equation. Some numerical exa...
متن کاملSTUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM
In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.
متن کاملOn characterizations of the fully rational fuzzy choice functions
In the present paper, we introduce the fuzzy Nehring axiom, fuzzy Sen axiom and weaker form of the weak fuzzycongruence axiom. We establish interrelations between these axioms and their relation with fuzzy Chernoff axiom. Weexpress full rationality of a fuzzy choice function using these axioms along with the fuzzy Chernoff axiom.
متن کاملFUZZY LOGISTIC DIFFERENCE EQUATION
In this study, we consider two different inequivalent formulations of the logistic difference equation $x_{n+1}= beta x_n(1- x_n), n=0,1,..., $ where $x_n$ is a sequence of fuzzy numbers and $beta$ is a positive fuzzy number. The major contribution of this paper is to study the existence, uniqueness and global behavior of the solutions for two corresponding equations, using the concept of Huku...
متن کاملDynamics of higher order rational difference equation $x_{n+1}=(alpha+beta x_{n})/(A + Bx_{n}+ Cx_{n-k})$
The main goal of this paper is to investigate the periodic character, invariant intervals, oscillation and global stability and other new results of all positive solutions of the equation$$x_{n+1}=frac{alpha+beta x_{n}}{A + Bx_{n}+ Cx_{n-k}},~~ n=0,1,2,ldots,$$where the parameters $alpha$, $beta$, $A$, $B$ and $C$ are positive, and the initial conditions $x_{-k},x_{-k+1},ldots,x_{-1},x_{0}$ are...
متن کامل